本文へ

ニュース

AI創薬の新たなアルゴリズムの開発とALS iPSパネルでの実装

日高 中(武田薬品工業)、今村恵子(京都大学CiRA増殖分化機構研究部門特定拠点講師、T-CiRA井上プロジェクト)、日置剛司(武田薬品工業、元T-CiRA井上プロジェクト)、高木輝文(武田薬品工業)、伏見真(武田薬品工業)、井上治久(京都大学CiRA増殖分化機構研究部門教授、T-CiRA井上プロジェクト、理化学研究所革新知能統合研究センター(AIP)iPS細胞連携医学的リスク回避チーム(上田修功チームリーダー)客員主管研究員、理化学研究所バイオリソース研究センターiPS創薬基盤開発チームチームリーダー)、河原吉伸(理化学研究所AIP構造的学習チームチームリーダー、九州大学 マス・フォア・インダストリ研究所 教授)および儀我美一(東京大学大学院数理科学研究科 教授)らの研究グループは、化合物スクリーニングにおけるヒット化合物を予測する機械学習のアルゴリズムである熱拡散方程式(HDE)モデルを開発し、当該研究に応用しました。HDEモデルは、熱が拡散していく様子を計算式に表して化合物の有効性の高さをスコア化することでヒット化合物を予測する人工知能のひとつで、偏微分方程式論という数学解析からの知見に基づいています。一般公開されている化合物スクリーニングのデータを用いて、HDEが高い予測精度を示すことを明らかにしました。さらに、ALS患者さんから作製したiPS細胞を用いて運動神経の細胞死を抑制する化合物を探索するための5万個の化合物スクリーニングを実施し、その結果から、HDEモデルを用いて約200万個の化合物の有効性を予測しました。HDEで有効性が高いと予測抽出された化合物について30株のALS患者さんの iPS細胞から運動神経細胞を作製し、このALS iPSパネルを用いて効果を評価しました。結果として、多くのALS患者さんの細胞に強い効果を示す化合物の同定に成功しました。

本研究成果は、2020年11月12日(木)午前1時(日本時間)に米国科学雑誌「Patterns」で公開されました。